

Fig. 4. Packing diagram for 8 -quinolyl cyanomethyl sulfone.
these two groups would explain the larger $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angle, $107 \cdot 4^{\circ}$, than is generally found for acyclic sulfones, 102-105 ${ }^{\circ}$.

In summation, it appears that the general conformation of the molecule can be better explained as a balance of repulsive forces rather than in terms of an attractive $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ force.

The authors would like to thank the Robert A. Welch Foundation for support of this work (Grant No. F017).

## References

Castellano, E. \& Prout, C. K. (1971). J. Chem. Soc. (A), pp. 550-553.

Harlow, R. L., Loghry, R. A., Williams, H. J. \& Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.
Harlow, R. L., Sammes, M. P. \& Simonsen, S. H. (1974). Acta Cryst. B30, 2903-2905.
Harlow, R. L., Simonsen, S. H., Pfluger, C. E. \& Sammes, M. P. (1974). Acta Cryst. B30, 2264-2267.
Loghry, R. A. \& Simonsen, S. H. (1976). Acta Cryst. B32, 1505-1508.
Sammes, M. P. \& Harlow, R. L. (1976). J. Chem. Soc. Perkin II. To be published.
Sammes, M. P., Harlow, R. L. \& Simonsen, S. H. (1976). J. Chem. Soc. Perkin II. To be published.

Sax, M. \& Desiderato, R. (1967). Acta Cryst. 23, 319326.

Sime, J. G. \& Woodhouse, D. I. (1974). J. Cryst. Mol. Struct. 4, 269-286, 287-304.

Acta Cryst. (1976). B32, 2693

# Refinement of the Structure of 1-Methyl-2-(9'-fluorenylidene)-1,2-dihydropyridine. A Crowded Fulvalene 

By Herman L. Ammon<br>Department of Chemistry, University of Maryland, College Park, Maryland 20742, U.S.A.

(Received 19 January 1976; accepted 12 April 1976)


#### Abstract

C}_{19} \mathrm{H}_{15} \mathrm{~N}\); orthorhombic, $P b c a ; a=16 \cdot 674$ (2), $b=17.328$ (2), $c=9.525$ (1) $\AA ; Z=8 ; R=0.042$. Intramolecular nonbonded contacts are responsible for a $35.7^{\circ}$ twist of the exocyclic $\mathrm{C}=\mathrm{C}$. Bond lengths in the five-ring and heterocyclic six-ring show the effect of $\pi$-electron delocalization, indicating that a dipolar resonance form makes a substantial contribution to the ground-state hybrid.


Introduction. A $0.1 \times 0.1 \times 0.2 \mathrm{~mm}$ crystal was used to measure the lattice constants and intensities on a Picker FACS-I diffractometer equipped with a graphite monochromator and Mo X-ray source ( $K \alpha, \lambda=$ $0.71069 \AA$ ). The cell parameters were determined by the least-squares method from 13 Bragg angles measured manually at $\pm 2 \theta$ (average $\left|2 \theta_{o}-2 \theta_{c}\right|=0.004^{\circ}$ ). The intensities were measured with the $\theta-2 \theta$ scan
method, a $2 \theta$ scan speed of $0.5^{\circ} \mathrm{min}^{-1}$, a $2 \theta$ scan range equal to $1.6^{\circ}+0.692^{\circ} \tan \theta$, and 20 s backgrounds, to a $2 \theta$ maximum of $50^{\circ}$. Three standard reflection intensities, measured at 50 reflection intervals, were used to monitor and correct for intensity fluctuations and crystal decomposition (ca 3\%). A total of 3038 reflections were measured: 2423 of these were unique and 1033 had $I>3 \sigma(I)$.

The initial atomic coordinates were taken from a previous film data investigation (Ammon, 1969). The structure refinement used the full-matrix least-squares method with anisotropic temperature factors assigned to C and N and isotropic terms to H . The function minimized was $\Delta=\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ : weights of $w=$ $[1 / \sigma(F)]^{2}$ for $F<20, w=1$ for $F \simeq 20-70$ and $w=(70 / F)^{2}$ for $F>70$ were selected to provide an approximately constant value of $\Delta$ as a function of $\left|F_{o}\right|$. The $F_{c}$ 's were corrected for secondary isotropic extinction $\left[r^{*}=\right.$ $0 \cdot 0017$ (3); Larson, 1970], and only those reflections for which $I_{c} \geq 3 \sigma\left(I_{o}\right)$ were included in the least-squares calculations. The source of the C and N scattering factors was Berghuis, Haanappel, Potters, Loopstra, MacGillavry \& Veenendaal (1955), and the H factors were taken from the work of Stewart, Davidson \& Simpson (1965). The final $R\left(\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|\right)$ and weighted $R\left\{\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}\right\}$ indices were 0.042 and 0.035 respectively. All calculations were performed with the X-RAY system of programs (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) on a Univac 1108 computer at the University of Maryland's Computer Science Center. The atomic parameters are listed in Table 1. $\dagger$

[^0]Discussion. The structure of the title compound (I) is of interest because of the strain inherent in planar form ( $\mathrm{I} a$ ), and the potential importance of the mesomeric form ( $\mathrm{I} b$ ) as a means of reducing the structural restraints imposed by the inter-ring $\mathrm{C}=\mathrm{C}\left[\mathrm{C}(2)-\mathrm{C}(9)^{\prime}\right]$. A previous study (Ammon \& Wheeler, 1975) of the structure of (II $a$ ) revealed an $18.6^{\circ}$ twist of the exocyclic $\mathrm{C}=\mathrm{C}$, presumably arising from non-bonded interactions between the five-membered ring and the


Fig. 1. An ORTEP drawing normal to the five-ring plane with bond lengths ( $\AA$ ), angles ( ${ }^{\circ}$ ) and e.s.d.'s (in parentheses). The angles at $\mathrm{C}(7)$ not given in the drawing are: $\mathrm{N}-\mathrm{C}(7)-$ $\mathrm{H}(7 a)=114$ (2), $\mathrm{N}-\mathrm{C}(7)-\mathrm{H}(7 b)=115$ (3), $\mathrm{N}-\mathrm{C}(7)-\mathrm{H}(7 c)=$ 108 (2), $\mathrm{H}(7 a)-\mathrm{C}(7)-\mathrm{H}(7 b)=101$ (3), $\mathrm{H}(7 a)-\mathrm{C}(7)-\mathrm{H}(7 c)=$ 111 (3) and $\mathrm{H}(7 b)-\mathrm{C}(7)-\mathrm{H}(7 c)=108(3)^{\circ}$.

Table 1. Fractional atomic coordinates, temperature factors $\left(\AA^{2} \times 10^{3}\right.$, for $\mathrm{H} \times 10^{2}$ ) and estimated standard deviations (in parentheses)

|  | $x$ | \% | $z$ | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ | $U_{13}$ | $U_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | $0 \cdot 3348$ (2) | $0 \cdot 5625$ (1) | $1 \cdot 2932$ (3) | 55 (2) | 39 (2) | 48 (2) | 2 (2) | 8 (2) | -1 (2) |
| C(2) | $0 \cdot 3662$ (2) | $0 \cdot 4922$ (2) | $1 \cdot 2506$ (3) | 51 (2) | 38 (2) | 38 (2) | 2 (2) | 7 (2) | 1 (2) |
| C(3) | $0 \cdot 4505$ (2) | 0.4848 (2) | $1 \cdot 2669$ (4) | 48 (2) | 51 (2) | 55 (3) | 1 (2) | 3 (2) | -7 (2) |
| C(4) | 0.4962 (3) | 0.5392 (2) | $1 \cdot 3315$ (4) | 56 (3) | 71 (3) | 71 (3) | -9 (2) | 2 (3) | -2 (2) |
| C(5) | $0 \cdot 4594$ (3) | $0 \cdot 6056$ (2) | $1 \cdot 3848$ (5) | 75 (3) | 67 (3) | 72 (3) | -18(3) | 3 (3) | -11(3) |
| C(6) | $0 \cdot 3812$ (3) | $0 \cdot 6155$ (2) | $1 \cdot 3638$ (4) | 79 (3) | 47 (2) | 59 (3) | -7 (2) | 15 (3) | -13 (2) |
| $\mathrm{C}(7)$ | $0 \cdot 2550$ (3) | $0 \cdot 5880$ (2) | $1 \cdot 2464$ (6) | 67 (3) | 45 (2) | 65 (3) | 13 (2) | 4 (3) | 5 (3) |
| $\mathrm{C}\left(1^{\prime}\right)$ | $0 \cdot 1927$ (2) | 0.4307 (2) | $1 \cdot 3627$ (4) | 47 (2) | 47 (2) | 50 (2) | 7 (2) | 5 (2) | 1 (2) |
| $\mathrm{C}\left(2^{\prime}\right)$ | $0 \cdot 1245$ (2) | 0.3897 (2) | $1 \cdot 3956$ (4) | 49 (2) | 64 (3) | 55 (3) | 12 (2) | 12 (2) | 1 (2) |
| $\mathrm{C}\left(3^{\prime}\right)$ | $0 \cdot 1007$ (2) | $0 \cdot 3252$ (2) | $1 \cdot 3187$ (4) | 42 (2) | 63 (2) | 69 (3) | 1 (2) | 4 (2) | 7 (2) |
| $\mathrm{C}\left(4^{\prime}\right)$ | 0.1482 (2) | $0 \cdot 2986$ (2) | $1 \cdot 2117$ (3) | 48 (2) | 48 (2) | 56 (3) | 0 (2) | -5 (2) | 2 (2) |
| $\mathrm{C}\left(4 \mathrm{a}^{\prime}\right)$ | $0 \cdot 2190$ (2) | 0.3374 (2) | $1 \cdot 1787$ (3) | 42 (2) | 46 (2) | 36 (2) | 5 (2) | -3 (2) | 3 (2) |
| $\mathrm{C}\left(4 \mathrm{~b}^{\prime}\right)$ | $0 \cdot 2832$ (2) | $0 \cdot 3181$ (2) | $1 \cdot 0826$ (3) | 49 (2) | 37 (2) | 39 (2) | 3 (2) | -8(2) | 4 (2) |
| $\mathrm{C}\left(5^{\circ}\right)$ | 0.2939 (2) | $0 \cdot 2564$ (2) | $0 \cdot 9909$ (4) | 55 (2) | 45 (2) | 49 (2) | -2(2) | -8(2) | -3(2) |
| $\mathrm{C}\left(6^{\prime}\right)$ | $0 \cdot 3620$ (2) | 0.2512 (2) | 0.9101 (4) | 59 (2) | 56 (2) | 54 (3) | 10 (2) | -4 (2) | -14(2) |
| $\mathrm{C}\left(7^{\prime}\right)$ | $0 \cdot 4193$ (2) | $0 \cdot 3095$ (2) | 0.9171 (4) | 47 (2) | 74 (3) | 46 (2) | 12 (2) | 5 (2) | -9 (2) |
| $\mathrm{C}\left(8^{\prime}\right)$ | $0 \cdot 4101$ (2) | $0 \cdot 3720$ (2) | $1 \cdot 0070$ (4) | 43 (2) | 53 (2) | 48 (2) | -2 (2) | -2 (2) | -6 (2) |
| $\mathrm{C}\left(8 \mathrm{a}^{\prime}\right)$ | $0 \cdot 3434$ (2) | 0.3757 (2) | 1.0945 (3) | 43 (2) | 43 (2) | 32 (2) | 6 (2) | 0 (2) | 3 (2) |
| $\mathrm{C}(9)$ | $0 \cdot 3179$ (2) | $0 \cdot 4325$ (2) | $1 \cdot 1989$ (3) | 45 (2) | 41 (2) | 39 (2) | 3 (2) | -1 (2) | 0 (2) |
| C(9a) | $0 \cdot 2405$ (2) | $0 \cdot 4063$ (2) | $1 \cdot 2503$ (3) | 44 (2) | 43 (2) | 36 (2) | 8 (2) | -2 (2) | 1 (2) |

Table 1 (cont.)

|  | $x$ | $y$ | $z$ | $U$ |
| :---: | :---: | :---: | :---: | :---: |
| H(3) | 0.473 (2) | 0.437 (2) | $1 \cdot 235$ (3) | 6 (1) |
| H(4) | 0.552 (2) | $0 \cdot 529$ (2) | 1.342 (4) | 6 (1) |
| H(5) | 0.494 (2) | 0.645 (2) | $1 \cdot 433$ (4) | 8 (1) |
| H(6) | 0.353 (2) | 0.661 (2) | 1.397 (3) | 5 (1) |
| H (7a) | $0 \cdot 232$ (2) | $0 \cdot 557$ (2) | $1 \cdot 165$ (4) | 8 (1) |
| $\mathrm{H}(7 \mathrm{~b})$ | $0 \cdot 212$ (3) | 0.581 (2) | $1 \cdot 317$ (5) | 13 (2) |
| H (7c) | $0 \cdot 259$ (2) | $0 \cdot 641$ (2) | 1.223 (4) | 8 (1) |
| $\mathrm{H}\left(1^{\prime}\right)$ | $0 \cdot 208$ (2) | 0.474 (2) | $1 \cdot 422$ (3) | $4 \cdot 7$ (9) |
| $\mathrm{H}\left(2^{\prime}\right)$ | 0.095 (2) | $0 \cdot 404$ (2) | $1 \cdot 471$ (3) | 4 (1) |
| $\mathrm{H}\left(3^{\prime}\right)$ | 0.049 (2) | $0 \cdot 299$ (2) | $1 \cdot 343$ (3) | 5 (1) |
| H(4') | $0 \cdot 136$ (1) | $0 \cdot 251$ (2) | $1 \cdot 160$ (3) | $3 \cdot 5$ (8) |
| $\mathrm{H}\left(5^{\prime}\right)$ | 0.255 (2) | 0.219 (2) | 0.981 (3) | 5 (1) |
| H(6) | 0.373 (2) | $0 \cdot 208$ (2) | 0.850 (3) | 6 (1) |
| $\mathrm{H} 7^{\prime}$ ) | 0.463 (2) | 0.308 (1) | 0.857 (3) | $3 \cdot 7$ (9) |
| H(8) | $0 \cdot 450$ (2) | $0 \cdot 410$ (1) | $1 \cdot 010$ (3) | $3 \cdot 8$ (9) |

$N$-benzyl group. CNDO/2 calculations on model systems suggested that a dipolar canonical form such as (III $a$ ) might make as much as a $40 \%$ contribution to the ground-state resonance hybrid. In the case of (I), the $A$ ring effectively prevents relief of the $\mathrm{CH}_{3} \ldots$ ring $B$ strain by bond-angle deformation at $\mathbf{C}\left(9^{\prime}\right)$ and $\mathrm{C}(2)$, setting the stage for an even larger $\mathrm{C}=\mathrm{C}$ twist than that found in (II a).

(Ia)

(II)


$\longmapsto$

(Ib)

$$
\begin{aligned}
& a: \mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} . \\
& b: \mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} ; \mathrm{R}_{2}=\mathrm{CH}_{3} \mathrm{CO} ; \mathrm{R}_{3}=\mathrm{H} \\
& c: \mathrm{R}_{1}=\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}-\mathrm{R}_{3}= \\
& \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}
\end{aligned}
$$

ORTEP (Johnson, 1971) drawings of (I), one containing bond lengths and angles, are shown in Figs. 1 and 2. Both the heterocyclic six-membered ring and


Fig. 2. An $O R T E P$ drawing parallel to $\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}(2)$ to illustrate the fluorenylidene bend and $\mathbf{C}=\mathbf{C}$ twist.
the fluorenylidene nucleus are slightly distorted from their ideal planar geometries (Table 2). The major fluorenylidene distortion occurs in ring $B$; atoms $\mathrm{C}\left(1^{\prime}\right)$, $C\left(2^{\prime}\right)$ and $C\left(3^{\prime}\right)$ are found significantly below the plane of the central five-membered ring (see Fig. 2). The $\mathrm{CH}_{3} \cdots \mathrm{C}\left(1^{\prime}\right)$ interaction appears to have caused these three atoms to bend as a unit since the out-of-plane distances are approximately the same for $\mathrm{C}\left(1^{\prime}\right)$ and $\mathrm{C}\left(3^{\prime}\right)$, whereas the $\mathrm{C}\left(2^{\prime}\right)$ distortion is about $0 \cdot 1 \AA$ larger.

Table 2. Least-squares plane deviations ( $\AA$ )

|  | Planes 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| N | 0.440 |  |  | -0.042* |
| C(2) | -0.157 |  |  | 0.044* |
| C(3) | -0.971 |  | -1.074 | -0.013* |
| C(4) | $-1.250$ |  |  | -0.022* |
| C(5) | -0.722 |  |  | 0.027* |
| C(6) | 0.102 |  |  | 0.006* |
| C(7) | 1.595 |  |  | -0.392 |
| C( $1^{\prime}$ ) | -0.186 | -0.005* |  | 1.969 |
| C(2) | -0.277 | -0.020* |  |  |
| C( $3^{\prime}$ ) | -0.172 | 0.021* |  |  |
| C(4) | -0.047 | 0.002* |  |  |
| C(4a') | 0.005* | -0.027* | 0.029 |  |
| $\mathrm{C}\left(4 \mathrm{~b}^{\prime}\right)$ | -0.002* | -0.184 | 0.013* |  |
| C(5) | -0.029 |  | 0.009* |  |
| C(6) | -0.040 |  | $-0.018^{*}$ |  |
| $\mathrm{C}\left(7^{\prime}\right)$ | 0.021 |  | 0.005* |  |
| $\mathrm{C}\left(8^{\prime}\right)$ | 0.057 |  | 0.017* | -1.209 |
| $\mathrm{C}\left(8 \mathrm{a}^{\prime}\right)$ | 0.002** |  | -0.026* |  |
| $\mathrm{C}\left(9^{\prime}\right)$ | 0.005* | $-0.070$ | -0.037 | $0 \cdot 210$ |
| C(9a') | -0.006* | 0.028* |  |  |

Plane 1: $-7.5192 x+9.2635 y-6.8079 z=-6.5506$
Plane 2: $-8.6389 x+9.8274 y-6.0985 z=-5.7378$
Plane 3: $-7 \cdot 8185 x+8 \cdot 8969 y-6 \cdot 8456 z=-6 \cdot 8078$
Plane 4: $-2 \cdot 9699 x-7.6365 y+8 \cdot 3802 z=5 \cdot 5895$

* Used for calculation of the least-squares plane.

The principal mechanism for relief of the $\mathrm{CH}_{3} \cdots \mathrm{C}\left(1^{\prime}\right)$ and $\mathrm{C}(3) \cdots \mathrm{C}\left(8^{\prime}\right)$ nonbonded interactions is a twist and bend of the inter-ring $\mathrm{C}=\mathrm{C}$ (Fig. 2), and displacement of the $\mathrm{CH}_{3}$ from the plane of the dihydropyridine ring. The ring is surprisingly planar (Table 2) in view of the severe steric effects that must exist across the $\mathrm{C}=\mathrm{C}$. The $0.39 \AA$ displacement of the $\mathrm{CH}_{3}$ group from the heterocyclic plane is similar to the $0.34 \AA$ distance found for the benzylic C atom in (IIc) (Ammon \& Wheeler, 1975); in the case of (I), the displacement adds $c a 0.03 \AA$ to the $\mathrm{CH}_{3} \cdots \mathrm{C}\left(1^{\prime}\right)$ separation. In a planar model of (I), the nonbonded distances would be approximately $3.05 \AA$ for $C(3) \cdots C\left(8^{\prime}\right)$ and $2.56 \AA$ for $C(7) \cdots C\left(1^{\prime}\right)$, both of which are smaller than the normal C…C van der Waals separation of $3 \cdot 4 \AA$ (Pauling, 1960). The $2 \cdot 56$ $\AA$ distance is impossibly short and the interaction is undoubtedly responsible for the magnitude of the $\mathrm{C}=\mathrm{C}$ twist. The staggered conformation of the $\mathrm{CH}_{3}$ group (see Figs. 1 and 2) with respect to the dihydropyridine ring minimizes nonbonded interactions with both this ring and the $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(9 \mathrm{a}^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$ region of the fluorenylidene nucleus.

From the normals to the least-squares planes of the five-membered ring and heterocyclic ring, the twist and tilt components [see Ammon \& Wheeler (1975) for the algorithm] of the $\mathrm{C}=\mathrm{C}$ are 35.7 and $15.1^{\circ}$ respectively. This twist is similar to values observed in other overcrowded fulvalenes: e.g. $40^{\circ}$ in bis(fluorenylidene) (Bailey \& Hull, 1971) and $38.5^{\circ}$ in octabromopentafulvalene (Ammon, Fallon, West \& Rao, 1974). The $1 \cdot 400 \AA$ inter-ring $\mathrm{C}=\mathrm{C}$ distance is similar to the lengths of 1.39 and $1.385 \AA$ in these two crowded pentafulvalenes, and to the $1 \cdot 410 \AA$ in (IIa), and $1.412 \AA$ in (IIc) (Ammon \& Wheeler, 1975), but it is significantly shorter than the $1.442 \AA$ observed in (IIb) (Ammon \& Erhardt, 1975).
The degree of charge separation in unsymmetrical fulvalenes such as (I) and (II) depends upon two major structural characteristics: (1) the inherent abilities of the cyclic substituents at the termini of the inter-ring $\mathrm{C}=\mathrm{C}$ to stabilize + and - charges; (2) steric effects which force a $\mathrm{C}=\mathrm{C}$ twist and reduction in $\pi$-bond character, thereby increasing the dipolar contribution above that in a planar conformation. The $p K_{a}^{\prime}$ 's of cyclopentadiene at 15 , and fluorene at 22.9 (Buncel, 1975), suggest that the degree of charge separation arising from factor (1) above is (II $b$ ) $>(\mathrm{II} a)>(\mathrm{I})$.* Since the charge separation in these compounds should be related to the extent of $\pi$-delocalization in the heterocyclic rings, we have attempted to evaluate this delocalization with a modified form of Julg's aromaticity index (Julg, 1971; Wheeler \& Ammon, 1974). The indices, which are based on ring $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths, are 1.00 for pyridine ( $100 \%$ delocalization) and 0.59 for cyclohexatriene ( $0 \%$ delocalization). The values of $0.90,0.79$ and 0.81 for (IIb), (IIa) and (I), respectively, correspond to 76, 49 and $53 \%$ of the delocalization in pyridine. Relative to (IIa), the increase in dipolar character in (I) presumably is due to a major contribution from factor (2).
The effects of negative charge delocalization on bond lengths in the five-membered ring portion of the fluorenylidene nucleus of (I) can be readily illustrated by a comparison with the appropriate distances in 9 -

[^1]fluorenone (Luss \& Smith, 1972). The single-bond distances in (I) $\left[\mathrm{C}\left(8 \mathrm{a}^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right), \mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(9 \mathrm{a}^{\prime}\right)=1 \cdot 457\right.$; $\mathrm{C}\left(4 \mathrm{a}^{\prime}\right)-\mathrm{C}\left(4 \mathrm{~b}^{\prime}\right)=1.448 \AA$ ] are shorter than the corresponding 9 -fluorenone bonds ( $1 \cdot 486,1 \cdot 475 \AA$ ), whereas the benzenoid double-bond lengths in (I) [C(4a')$\left.C\left(9 a^{\prime}\right), C\left(4 b^{\prime}\right)-C\left(8 a^{\prime}\right)=1 \cdot 420 \AA\right]$ are longer than the corresponding $1 \cdot 390 \AA$ ketone values.

I wish to thank the National Science Foundation for financial support (GP-15,791 and 37,528), and the Computer Science Center of the University of Maryland for a grant of computer time.

## References

Ammon, H. L. (1969). Tetrahedron Lett. pp. 3305-3307.
Ammon, H. L. \& Erhardt, W. D. (1975). Unpublished.
Ammon, H. L., Fallon, L., West, R. \& Rao, V. N. M. (1974). Acta Cryst. B30, 2407-2410.

Ammon, H. L. \& Wheeler, G. L. (1975). J. Amer. Chem. Soc. 97, 2326-2336.
Bailey, N. A. \& Hull, S. E. (1971). Chem. Commun. pp. 960-961.
Berghuis, J., Haanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A. L. (1955). Acta Cryst. 8, 478-483.

Buncel, E. (1975). Carbanions: Mechanistic and Isotopic Aspects, p. 20. New York: Elsevier.
Johnson, C. K. (1971). ORTEP II. Oak Ridge National Laboratory Report ORNL-3794.
Julg, A. (1971). The Jerusalem Symposium on Quantum Chemistry and Biochemistry. Aromaticity, Pseudo-aromaticity and Antiaromaticity, edited by E. D. Bergmann \& B. Pullman, Vol. 3, p. 383. Jerusalem: Jerusalem Academic Press.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Luss, H. R. \& Smith, D. L. (1972). Acta Cryst. B28, 884 889.

Pauling, L. (1960). The Nature of the Chemical Bond, p. 260. Ithaca: Cornell Univ. Press.

Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The X-RAY system version of June 1972. Tech. Rep. 192, Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wheeler, G. L. \& Ammon, H. L. (1974). Acta Cryst. B30, 680-687.


[^0]:    $\dagger$ A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31801 (10 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^1]:    * The position of (II $b$ ) in this sequence is based on the assumption that the $p K_{a}$ of diacetylcyclopentadiene would be smaller than 15 . The stable form of diacetylcyclopentadiene is the fulvenoid tautomer 2-acetyl-6-hydroxy-6-methylpentafulvene.

